Romanian - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Romanian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
📋 Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.509x | 3.51 | 0.0794% | 2,993,510 |
| 16k | 3.856x | 3.86 | 0.0872% | 2,724,242 |
| 32k | 4.158x | 4.16 | 0.0941% | 2,526,285 |
| 64k | 4.390x 🏆 | 4.39 | 0.0993% | 2,392,489 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Student la Iași este un film românesc din regizat de Iancu Moscu. Prezentare Not...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁stud ent ▁la ▁iași ▁este ▁un ▁film ▁românesc ▁din ▁regizat ... (+19 more) |
29 |
| 16k | ▁student ▁la ▁iași ▁este ▁un ▁film ▁românesc ▁din ▁regizat ▁de ... (+17 more) |
27 |
| 32k | ▁student ▁la ▁iași ▁este ▁un ▁film ▁românesc ▁din ▁regizat ▁de ... (+17 more) |
27 |
| 64k | ▁student ▁la ▁iași ▁este ▁un ▁film ▁românesc ▁din ▁regizat ▁de ... (+16 more) |
26 |
Sample 2: Dellys (în ) este o comună din provincia Boumerdès, Algeria. Populația comunei e...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁del ly s ▁( în ▁) ▁este ▁o ▁comună ▁din ... (+32 more) |
42 |
| 16k | ▁del ly s ▁( în ▁) ▁este ▁o ▁comună ▁din ... (+30 more) |
40 |
| 32k | ▁del ly s ▁( în ▁) ▁este ▁o ▁comună ▁din ... (+28 more) |
38 |
| 64k | ▁del lys ▁( în ▁) ▁este ▁o ▁comună ▁din ▁provincia ... (+27 more) |
37 |
Sample 3: Districtul Ghanzi este o unitate administrativă de gradul I a Botswanei. Reședin...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁districtul ▁gh an zi ▁este ▁o ▁unitate ▁administrativă ▁de ▁gradul ... (+20 more) |
30 |
| 16k | ▁districtul ▁gh an zi ▁este ▁o ▁unitate ▁administrativă ▁de ▁gradul ... (+18 more) |
28 |
| 32k | ▁districtul ▁gh an zi ▁este ▁o ▁unitate ▁administrativă ▁de ▁gradul ... (+16 more) |
26 |
| 64k | ▁districtul ▁gh anzi ▁este ▁o ▁unitate ▁administrativă ▁de ▁gradul ▁i ... (+14 more) |
24 |
Key Findings
- Best Compression: 64k achieves 4.390x compression
- Lowest UNK Rate: 8k with 0.0794% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 205,060 | 17.65 | 2,532,825 | 7.4% | 20.1% |
| 2-gram | Subword | 292 🏆 | 8.19 | 25,018 | 66.3% | 98.8% |
| 3-gram | Word | 766,050 | 19.55 | 5,498,790 | 4.2% | 13.3% |
| 3-gram | Subword | 2,777 | 11.44 | 204,577 | 23.4% | 68.1% |
| 4-gram | Word | 1,571,159 | 20.58 | 9,773,331 | 4.5% | 12.6% |
| 4-gram | Subword | 18,034 | 14.14 | 1,231,714 | 10.9% | 33.7% |
| 5-gram | Word | 1,108,597 | 20.08 | 7,317,897 | 5.4% | 14.9% |
| 5-gram | Subword | 81,535 | 16.32 | 4,440,105 | 5.8% | 19.5% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a fost |
808,239 |
| 2 | de la |
359,725 |
| 3 | și a |
251,044 |
| 4 | s a |
242,444 |
| 5 | este un |
233,222 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | note vezi și |
91,186 |
| 2 | vezi și lista |
71,949 |
| 3 | este o comună |
70,187 |
| 4 | note legături externe |
60,989 |
| 5 | o populație de |
60,015 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | n a n a |
56,941 |
| 2 | a n a n |
55,498 |
| 3 | sit de importanță comunitară |
47,608 |
| 4 | este o comună în |
46,035 |
| 5 | note vezi și lista |
40,899 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a n a n a |
55,482 |
| 2 | n a n a n |
55,475 |
| 3 | vezi și lista comunelor din |
35,488 |
| 4 | în avea o populație de |
35,072 |
| 5 | o populație de de locuitori |
31,758 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | e _ |
28,265,039 |
| 2 | a _ |
18,155,605 |
| 3 | i _ |
15,711,698 |
| 4 | _ d |
15,332,304 |
| 5 | _ a |
15,214,376 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e |
8,942,495 |
| 2 | d e _ |
7,054,943 |
| 3 | _ î n |
5,914,607 |
| 4 | u l _ |
4,805,326 |
| 5 | t e _ |
4,562,704 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e _ |
6,660,386 |
| 2 | _ î n _ |
4,262,099 |
| 3 | _ ș i _ |
3,485,100 |
| 4 | _ d i n |
2,798,373 |
| 5 | d i n _ |
2,518,101 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d i n _ |
2,482,885 |
| 2 | e _ d e _ |
1,594,240 |
| 3 | u l u i _ |
1,386,476 |
| 4 | e s t e _ |
1,341,205 |
| 5 | _ e s t e |
1,226,918 |
Key Findings
- Best Perplexity: 2-gram (subword) with 292
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~19% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 1.0073 | 2.010 | 13.21 | 2,248,490 | 0.0% |
| 1 | Subword | 1.1788 | 2.264 | 8.48 | 12,070 | 0.0% |
| 2 | Word | 0.3854 | 1.306 | 2.43 | 29,656,166 | 61.5% |
| 2 | Subword | 0.6779 | 1.600 | 4.67 | 102,322 | 32.2% |
| 3 | Word | 0.1722 | 1.127 | 1.41 | 71,943,902 | 82.8% |
| 3 | Subword | 0.7466 | 1.678 | 4.47 | 477,697 | 25.3% |
| 4 | Word | 0.0757 🏆 | 1.054 | 1.14 | 100,959,109 | 92.4% |
| 4 | Subword | 0.7131 | 1.639 | 3.72 | 2,133,043 | 28.7% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
de mâl limosa lapponica gușă roșie fondat sau de științe of a fost cel mai pututîn este vizibil de de jos prezintă o anchetă jafurile venite fiind înlocuite cu fecalele umanea populației localității tomașivka andriivka în la mână în armata roșie a a permite utilizatorilor c...
Context Size 2:
a fost numit asistent la disciplina giuridica delle onorificenze cavalleresche nota a comentând mai ...de la modestul preț de către uniunea sovietică comandanți supremi după încheierea primului război mo...și a celei de a șaptea printre care nows the time of the world spider catalog platnick
Context Size 3:
note vezi și lista comunelor din charente din charentevezi și lista comunelor din provincia caltanissetta din provincia caltanissetta din provincia caltan...este o comună din landul renania palatinat germania din renania palatinat germania din renania de no...
Context Size 4:
n a n a n a n a n a n a n a n a n a na n a n a n a n a n a n a n a n a n asit de importanță comunitară în pentru a proteja 1 specie de animale situl a fost protejat și ca ari...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_wintocie,_îm_treniul_ଭାଦ୍ରବର୍ଷା_fg._aiafă_diidiulanng
Context Size 2:
e_clațărie_dinetoa_întustele_dovtái_dențăralkune_op
Context Size 3:
_de_timporțelea_pede_joc_o_scu_20._v_în_trum._i._trang
Context Size 4:
_de_iluzional_terne_în_prevăzute_în_ar_și_svensiunea_și_d
Key Findings
- Best Predictability: Context-4 (word) with 92.4% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (2,133,043 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 1,063,320 |
| Total Tokens | 148,931,070 |
| Mean Frequency | 140.06 |
| Median Frequency | 4 |
| Frequency Std Dev | 10923.94 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | de | 6,793,212 |
| 2 | în | 4,430,805 |
| 3 | a | 4,231,898 |
| 4 | și | 3,652,227 |
| 5 | din | 2,514,433 |
| 6 | la | 2,115,037 |
| 7 | o | 1,474,530 |
| 8 | cu | 1,397,534 |
| 9 | este | 1,225,578 |
| 10 | pe | 1,161,786 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | dyschronia | 2 |
| 2 | 藍より群青 | 2 |
| 3 | sklshōter | 2 |
| 4 | mawaru | 2 |
| 5 | penguindrum | 2 |
| 6 | gyukaku | 2 |
| 7 | yūshō | 2 |
| 8 | nittere | 2 |
| 9 | もうどうなってもいいや | 2 |
| 10 | moonlightspeed | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.9601 |
| R² (Goodness of Fit) | 0.997513 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 35.0% |
| Top 1,000 | 55.0% |
| Top 5,000 | 71.4% |
| Top 10,000 | 78.5% |
Key Findings
- Zipf Compliance: R²=0.9975 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 35.0% of corpus
- Long Tail: 1,053,320 words needed for remaining 21.5% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7633 🏆 | 0.3701 | N/A | N/A |
| mono_64d | 64 | 0.7375 | 0.2901 | N/A | N/A |
| mono_128d | 128 | 0.6913 | 0.2301 | N/A | N/A |
| aligned_32d | 32 | 0.7633 | 0.3630 | 0.4660 | 0.8300 |
| aligned_64d | 64 | 0.7375 | 0.2868 | 0.6720 | 0.9220 |
| aligned_128d | 128 | 0.6913 | 0.2408 | 0.8020 | 0.9680 |
Key Findings
- Best Isotropy: mono_32d with 0.7633 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2968. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 80.2% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.235 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-s |
sogodianus, sénaillac, seymours |
-a |
adile, aethionema, adjudecător |
-m |
meryamun, midnattens, maletici |
-ma |
maletici, malinivka, mayura |
-b |
bosak, barwice, buildinguri |
-p |
preacinstitul, posljednji, preservarea |
-c |
cluentius, catalige, collesano |
-k |
kerestur, klosterwald, korzeniewski |
Productive Suffixes
| Suffix | Examples |
|---|---|
-e |
demontare, disunitae, adile |
-i |
posljednji, urșii, parahnevîci |
-a |
preservarea, naadokila, aethionema |
-s |
sogodianus, seymours, cluentius |
-n |
meryamun, pinson, seddon |
-r |
tecar, patelar, adjudecător |
-l |
preacinstitul, perforatorul, piroluzitul |
-le |
adile, cătanele, générale |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
itat |
1.81x | 410 contexts | uitat, mitat, itata |
omân |
2.37x | 83 contexts | român, români, românt |
nter |
1.60x | 441 contexts | anter, inter, enter |
orul |
1.74x | 188 contexts | forul, porul, horul |
reșt |
1.76x | 132 contexts | creșt, rești, crești |
stru |
1.39x | 360 contexts | strum, struś, astru |
embr |
1.67x | 128 contexts | membr, embry, embru |
ătur |
1.57x | 169 contexts | mătur, bătură, pătura |
înce |
1.96x | 56 contexts | încet, încep, începă |
ific |
1.38x | 305 contexts | tific, ificle, tifici |
ații |
1.63x | 125 contexts | jații, tații, nații |
ităț |
1.86x | 59 contexts | unități, zeități, legități |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-p |
-e |
106 words | politechnique, podlešje |
-s |
-e |
101 words | superspațiile, shadowmachine |
-s |
-i |
84 words | sanguigni, senaatintori |
-a |
-a |
83 words | adâncimea, alivepasărea |
-s |
-a |
83 words | saitta, sidusa |
-c |
-e |
82 words | capoise, concetrate |
-c |
-i |
76 words | climaxului, calmuri |
-a |
-e |
75 words | antiastmatice, ardiège |
-c |
-a |
75 words | ciobănia, ctla |
-p |
-a |
73 words | pannonica, pampana |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| cooperage | coopera-g-e |
7.5 | g |
| trebuinta | trebui-n-ta |
7.5 | n |
| montesson | montes-s-on |
7.5 | s |
| dobropillea | dobropil-le-a |
7.5 | le |
| încercari | încerc-a-ri |
7.5 | a |
| trangensis | trangen-s-is |
7.5 | s |
| eliminatorieplay | eliminatoriepl-a-y |
7.5 | a |
| eishöhlen | eishöh-le-n |
7.5 | le |
| professor | profes-s-or |
7.5 | s |
| caterinei | caterin-e-i |
7.5 | e |
| bivittata | bivit-ta-ta |
7.5 | ta |
| enterotoxină | enterotoxi-n-ă |
7.5 | n |
| villexavier | villexav-i-er |
7.5 | i |
| arixeniidae | arixeniid-a-e |
7.5 | a |
| molligodai | molligod-a-i |
7.5 | a |
6.6 Linguistic Interpretation
Automated Insight: The language Romanian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.39x) |
| N-gram | 2-gram | Lowest perplexity (292) |
| Markov | Context-4 | Highest predictability (92.4%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
R² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- 🌐 Website: wikilangs.org
- 🤗 Models: huggingface.co/wikilangs
- 📊 Data: wikipedia-monthly
- 👤 Author: Omar Kamali
- 🤝 Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-17 02:43:30



















