MPNet base trained on GooAQ triplets using MultipleNegativesBidirectionalRankingLoss (refactored)

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-gooaq-mnbrl-refactored")
# Run inference
queries = [
    "is duchenne muscular dystrophy a dominant or recessive trait?",
]
documents = [
    'Duchenne muscular dystrophy is inherited in an X-linked recessive pattern. Males have only one copy of the X chromosome from their mother and one copy of the Y chromosome from their father. If their X chromosome has a DMD gene mutation, they will have Duchenne muscular dystrophy.',
    'The dream suggests captivity and it refers to your fear of punishment. Another interpretation of this dream refers to a need to do what you feel is right in waking life. Being in jail suggests that your feelings may be trapped by a limited mind and body. ... Jail also suggests repressed feelings.',
    "An automatic transmission will downshift for you when you drive uphill. However, for moderately steep slopes, it's wise to shift to the gear range marked D2, 2, or L to ascend and descend the hill. For steep slopes that you can't ascend at a speed faster than 10 mph (about 15 kph), shift to D1 or 1.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.9353, 0.7440, 0.7109]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7477
cosine_accuracy@3 0.8888
cosine_accuracy@5 0.9261
cosine_accuracy@10 0.9609
cosine_precision@1 0.7477
cosine_precision@3 0.2963
cosine_precision@5 0.1852
cosine_precision@10 0.0961
cosine_recall@1 0.7477
cosine_recall@3 0.8888
cosine_recall@5 0.9261
cosine_recall@10 0.9609
cosine_ndcg@10 0.8579
cosine_mrr@10 0.8244
cosine_map@100 0.8264

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 90,000 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.83 tokens
    • max: 20 tokens
    • min: 15 tokens
    • mean: 60.45 tokens
    • max: 180 tokens
  • Samples:
    question answer
    how long does halifax take to transfer mortgage funds? Bear in mind that the speed of application will vary depending on your own personal circumstances and the lender's present day-to-day performance. In some cases, applications can be approved by the lender within 24 hours, while some can take weeks or even months.
    can you get a false pregnancy test? In very rare cases, you can have a false-positive result. This means you're not pregnant but the test says you are. You could have a false-positive result if you have blood or protein in your pee. Certain drugs, such as tranquilizers, anticonvulsants, hypnotics, and fertility drugs, could cause false-positive results.
    are ahead of its time? Definition of ahead of one's/its time : too advanced or modern to be understood or appreciated during the time when one lives or works As a director, he was ahead of his time.
  • Loss: MultipleNegativesBidirectionalRankingLoss with these parameters:
    {
        "temperature": 0.01,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 10,000 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.93 tokens
    • max: 25 tokens
    • min: 14 tokens
    • mean: 60.84 tokens
    • max: 127 tokens
  • Samples:
    question answer
    should you take ibuprofen with high blood pressure? In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.
    how old do you have to be to work in sc? The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.
    how to write a topic proposal for a research paper? ['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']
  • Loss: MultipleNegativesBidirectionalRankingLoss with these parameters:
    {
        "temperature": 0.01,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss gooaq-dev_cosine_ndcg@10
-1 -1 - - 0.2155
0.0007 1 8.4423 - -
0.0355 50 4.1826 - -
0.0711 100 1.3262 0.9331 0.7720
0.1066 150 0.976 - -
0.1421 200 0.9217 0.8604 0.8109
0.1777 250 0.9121 - -
0.2132 300 0.8672 0.8313 0.8202
0.2488 350 0.8932 - -
0.2843 400 0.8514 0.8080 0.8329
0.3198 450 0.8552 - -
0.3554 500 0.8615 0.7994 0.8388
0.3909 550 0.8318 - -
0.4264 600 0.8286 0.7981 0.8399
0.4620 650 0.8339 - -
0.4975 700 0.8108 0.7909 0.8421
0.5330 750 0.8166 - -
0.5686 800 0.8253 0.7873 0.8488
0.6041 850 0.8202 - -
0.6397 900 0.8143 0.7860 0.8498
0.6752 950 0.811 - -
0.7107 1000 0.7956 0.7812 0.8528
0.7463 1050 0.8024 - -
0.7818 1100 0.8181 0.7773 0.8549
0.8173 1150 0.7897 - -
0.8529 1200 0.8035 0.7763 0.8562
0.8884 1250 0.8047 - -
0.9240 1300 0.7975 0.7746 0.8564
0.9595 1350 0.7862 - -
0.9950 1400 0.7996 0.7741 0.8579
-1 -1 - - 0.8579

Framework Versions

  • Python: 3.11.14
  • Sentence Transformers: 5.3.0.dev0
  • Transformers: 4.57.3
  • PyTorch: 2.9.1+cu130
  • Accelerate: 1.12.0
  • Datasets: 4.4.2
  • Tokenizers: 0.22.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
10
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/mpnet-base-gooaq-mnbrl-refactored

Finetuned
(113)
this model

Dataset used to train tomaarsen/mpnet-base-gooaq-mnbrl-refactored

Paper for tomaarsen/mpnet-base-gooaq-mnbrl-refactored

Evaluation results