Dataset Viewer
Auto-converted to Parquet Duplicate
audio
audioduration (s)
6.48
42.8
text
stringclasses
1 value
phonemes
stringclasses
1 value
block_num
int32
1
13
trial_num
int32
7
59
wav_id
stringlengths
17
19
10
21
t1520231015_10_21_0
4
39
t1520231229_4_39_0
10
34
t1520240719_10_34_0
6
34
t1520240721_6_34_0
9
44
t1520231022_9_44_0
10
25
t1520240719_10_25_0
3
17
t1520231020_3_17_0
8
40
t1520250110_8_40_0
8
49
t1520230820_8_49_0
8
13
t1520230924_8_13_0
9
38
t1520240719_9_38_0
6
29
t1520240728_6_29_0
9
38
t1520231208_9_38_0
7
40
t1520230820_7_40_0
9
36
t1520240315_9_36_0
7
32
t1520240728_7_32_0
5
45
t1520231013_5_45_0
7
30
t1520231126_7_30_0
12
35
t1520240614_12_35_0
9
32
t1520240315_9_32_0
11
39
t1520231217_11_39_0
4
27
t1520231104_4_27_0
3
32
t1520231117_3_32_0
8
49
t1520250110_8_49_0
5
35
t1520231013_5_35_0
9
16
t1520230813_9_16_0
4
49
t1520231229_4_49_0
6
36
t1520231013_6_36_0
6
19
t1520231006_6_19_0
11
58
t1520231217_11_58_0
7
23
t1520231126_7_23_0
8
48
t1520230901_8_48_0
7
25
t1520240728_7_25_0
8
33
t1520230901_8_33_0
9
27
t1520230813_9_27_0
9
36
t1520231022_9_36_0
6
27
t1520231013_6_27_0
9
35
t1520240315_9_35_0
4
43
t1520230929_4_43_0
9
34
t1520231022_9_34_0
1
38
t1520230827_1_38_0
9
40
t1520240315_9_40_0
6
32
t1520240721_6_32_0
4
30
t1520231229_4_30_0
8
20
t1520231001_8_20_0
5
30
t1520250316_5_30_0
7
48
t1520240728_7_48_0
5
31
t1520231013_5_31_0
6
26
t1520230818_6_26_0
7
47
t1520230820_7_47_0
10
38
t1520240719_10_38_0
6
41
t1520240728_6_41_0
6
27
t1520240721_6_27_0
9
23
t1520231022_9_23_0
8
34
t1520231208_8_34_0
9
26
t1520240719_9_26_0
8
27
t1520231001_8_27_0
4
18
t1520231104_4_18_0
9
38
t1520240315_9_38_0
9
29
t1520230813_9_29_0
7
26
t1520240315_7_26_0
7
29
t1520231006_7_29_0
9
33
t1520231208_9_33_0
5
37
t1520250316_5_37_0
6
42
t1520240225_6_42_0
6
39
t1520231103_6_39_0
7
25
t1520240317_7_25_0
8
48
t1520230820_8_48_0
7
45
t1520230818_7_45_0
9
35
t1520231208_9_35_0
3
36
t1520230929_3_36_0
7
48
t1520250112_7_48_0
6
17
t1520231006_6_17_0
6
46
t1520240728_6_46_0
8
26
t1520240308_8_26_0
1
47
t1520230827_1_47_0
3
49
t1520230929_3_49_0
9
47
t1520240315_9_47_0
8
49
t1520240308_8_49_0
7
31
t1520240317_7_31_0
5
35
t1520250316_5_35_0
7
44
t1520231210_7_44_0
8
28
t1520230901_8_28_0
8
35
t1520230813_8_35_0
9
22
t1520231022_9_22_0
5
26
t1520231103_5_26_0
7
41
t1520240510_7_41_0
8
39
t1520240308_8_39_0
6
45
t1520240317_6_45_0
11
30
t1520231217_11_30_0
4
23
t1520250314_4_23_0
7
39
t1520230820_7_39_0
7
28
t1520240510_7_28_0
9
29
t1520230901_9_29_0
8
47
t1520240308_8_47_0
8
28
t1520231001_8_28_0
9
30
t1520230901_9_30_0
5
42
t1520231229_5_42_0
9
41
t1520231015_9_41_0
5
41
t1520231103_5_41_0
End of preview. Expand in Data Studio

NEJM Brain-to-Text Sonified (iSTFT)

Pre-shuffled dataset (seed: 42) at 16kHz, 0-8000Hz range.

Sharded into 1500 files per shard for efficient loading.

Usage

from datasets import load_dataset
ds = load_dataset("ljcamargo/nejm-brain-to-text-sonified-contest-dataset")
Downloads last month
14